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1. Introduction

Gauge/string dualities inspired in AdS/CFT have provided recently many important results

concerning the description of strong interactions. The AdS/CFT correspondence [1 – 3] is

an exact duality between a string theory in ten dimensions and a superconformal gauge

theory in a lower dimensional space. In particular, it relates string theory in AdS5 × S5

space to N = 4 Yang Mills SU(N) theory with large N in four dimensions. Other exact

gauge string dualities [4, 5] relate non conformal N = 1 gauge theories to string theory in

less symmetric geometries.

Approximate dualities have been proposed such that the gauge theories have some

properties similar to QCD, the so called AdS/QCD approach. Polchinski and Strassler [6, 7]

introduced an infrared cut off in the gauge theory by considering an AdS slice with a size

related to this cut off, the now called hard wall model. Using this approach they found

the correct high energy scaling of hadronic amplitudes for fixed angle scattering [6]. This

scaling was observed experimentally and also reproduced by QCD a long time ago [8, 9] but

was in contrast to string theory predictions in flat space. This scaling was also analyzed

in the gauge/string duality approach in [10 – 13].

The introduction of an infrared cut off in the AdS space leads to a discrete spectrum for

normalizable fields. It is natural to associate these bulk modes with boundary masses, so

the hard wall model is useful to estimate hadronic masses [14 – 17]. On the other side, the

observed spectrum of hadrons is such that the states exhibit approximate linear relations

between mass squared and spin (or radial number), the so called Regge trajectories. The

hard wall model does not predict this linear behavior but rather asymptotically quadratic
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trajectories. This motivated a different AdS/QCD approach consisting of a background

involving AdS space and a dilaton field. This field acts effectively as a smooth infrared cut

off and leads to linear Regge trajectories for mesons [18] and glueballs [19]. This is the so

called soft wall model. For fermions the soft wall model does not lead to a discrete spectrum

since the dilaton introduced in the action factors out in the equations of motion [20].

The hard and soft wall models describe holographically confining gauge theories. At

finite temperature, both models have a gravity phase transition that corresponds to a

confinement/deconfinement transition. However the transition occurs at different temper-

atures for these models [21] (see also [22]).

A very important process that provides information on the hadronic structure is

the deep inelastic scattering (DIS) [23]. A detailed description of this process using

gauge/gravity duality was formulated in [7] in the hard wall model (see also [24]). The

structure functions were obtained from string theory in different regimes of the Bjorken

parameter x for the case of large ’t Hooft parameter gN . Gauge string duality has also

been used to calculate hadronic form factors [25 – 27]. Also, very recently, the problem

of deep inelastic scattering in N = 4 SYM plasma at strong coupling, in the context of

gauge/string duality, was discussed in [28].

Since the soft and hard wall models predict different behaviors for some physical quan-

tities, one could also expect different structure functions for deep inelastic scattering. The

proposal of this article is to calculate these structure functions for the soft wall model

in the case of large ’t Hooft parameter gN . This is done for the scalar fields which are

normalizable in this model. We consider two different regimes: 1 > x ≫ (gN)−1/2 corre-

sponding to massless string excitations (supergravity approximation) and exp (−√
gN) ≪

x≪ (gN)−1/2 corresponding to massive string excitations.

We also discuss the fermionic case where the soft wall dilaton background is not enough

to normalize the fields. We propose a different model combining hard and soft cut offs to

calculate fermionic structure functions.

In section 2 we will present the gauge string duality approach to deep inelastic scat-

tering. In section 3 we will calculate the structure functions for scalar particles in the soft

wall dilaton background within the supergravity approximation. In section 4 we study the

contribution of the massive string excitations to the hadronic structure functions in this

model. In section 5 we present our conclusions. In the appendix we present our hybrid

model for fermions.

2. Deep inelastic scattering and gauge string duality

Deep inelastic scattering consists of the scattering of a lepton from a hadron. The lepton

produces a virtual photon of momentum qµ which interacts with the hadron of momentum

Pµ. The final hadronic state, represented by X with momentum Pµ
X , is not observed (see

figure 1). The experiment detects the final lepton, determining the momentum transfer qµ,

but not the final hadronic state X. Then the corresponding inclusive cross section involves

a sum over all possible X. We can parametrize the process using as dynamical variables the
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Figure 1: Illustrative diagram for a deep inelastic scattering. A lepton ℓ exchanges a virtual

photon with a hadron of momentum P .

photon virtuality q2 and the Bjorken parameter x ≡ −q2/2P · q . Deep inelastic scattering

corresponds to the limit q2 → ∞, with x fixed.

The deep inelastic hadronic tensor (for unpolarized scattering) can be defined as

W µν = i

∫

d4y eiq·y〈P,Q|
[

Jµ(y), Jν(0)

]

|P,Q〉 , (2.1)

where Jµ(y) is the electromagnetic hadron current and Q is the electric charge of the initial

hadron. This tensor can be decomposed into the structure functions F1(x, q
2) and F2(x, q

2)

as [23]

W µν = F1(x, q
2)

(

ηµν − qµqν

q2

)

+
2x

q2
F2(x, q

2)

(

Pµ +
qµ

2x

)(

P ν +
qν

2x

)

, (2.2)

where we use the Minkowski metric ηµν = diag(−,+,+,+).

As is well known, the cross section for the deep inelastic scattering is related to the

amplitude of forward Compton scattering. This amplitude is determined by the tensor

T µν = i

∫

d4yeiq·y〈P,Q|T
(

Jµ(y)Jν(0)

)

|P,Q〉 , (2.3)

which can be decomposed as

T µν = F̃1(x, q
2)

(

ηµν − qµqν

q2

)

+
2x

q2
F̃2(x, q

2)

(

Pµ +
qµ

2x

)(

P ν +
qν

2x

)

, (2.4)

where F̃1(x, q
2) and F̃2(x, q

2) are the associated structure functions.

The optical theorem relates the tensors W µν and T µν and implies that [23]

F1,2(x, q
2) ≡ 2π Im F̃1,2(x, q

2) . (2.5)

The imaginary part of the forward Compton scattering amplitude can be expressed in

terms of a sum over the intermediate states X with mass MX , formed in the hadron-photon

collision

ImT µν = 2π2
∑

X

δ

(

M2
X +(P +q)2

)

〈P,Q|Jν(0)|P +q, X〉 〈P +q, X|Jµ(0)|P,Q〉 . (2.6)
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2.1 DIS in the hard wall model

Polchinski and Strassler found prescriptions for calculating ImT µν from gauge string duality

for different regimes of Bjorken parameter x [7] using the hard wall model. This model

consists of a space AdS5 ×W , with metric gMN :

ds2 ≡ gMN dxMdxN =
R2

z2
(dz2 + ηµνdy

µdyν) + R2ds2W , (2.7)

restricted to the region 0 ≤ z ≤ 1/Λ , where Λ is an infrared cut off interpreted as the

QCD scale. This cut off breaks conformal invariance. W is a five dimensional compact

space.

In the supergravity regime (x of order one) the prescription relates the matrix elements

of a hadron U(1) current to a ten dimensional interaction action. For the case of the

scattering of a scalar particle by a virtual photon with polarization ηµ the prescription

takes the form

ηµ〈PX ,X|J̃µ(q)|P,Q〉 = (2π)4 δ4(PX − P − q) ηµ 〈P + q,X|Jµ(0)|P,Q〉

= iQ
∫

d10x
√−gAm

(

Φi∂mΦ∗X − Φ∗X∂mΦi

)

. (2.8)

Here Am(x) = (Az, Aµ) is a Kaluza-Klein gauge field, Φi and ΦX are the dilaton fields

representing the initial and final scalar states. The solutions for the free field equations of

motion (with the hard cut off condition) were studied in [7] and are represented in terms of

the Bessel functions K0(qz) ,K1(qz) for the gauge field and J∆−2(pz) for the scalar state

with momentum p (that can be P or PX). Using these solutions in eqs. (2.8) and (2.6)

they found the structure functions for the scalar case

F1(x, q
2) = 0 ; F2(x, q

2) = πC0 Q2

(

Λ2

q2

)∆−1

x∆+1 (1 − x)∆−2 , (2.9)

where C0 is a normalization constant and ∆ is the scaling dimension of the scalar state.

2.2 DIS in the soft wall model

An AdS/QCD phenomenological model that leads to linear Regge trajectories was proposed

in [18]. In this, so called, soft wall model there is an AdS5 space with a static dilaton

background field ϕ. In this model there is no hard cut off: 0 ≤ z < ∞ . The infrared cut

off is represented by the background dilaton field which is chosen as ϕ = cz2. The constant

c, with dimension of mass squared, is related to the QCD scale.

Inspired in this five dimensional model, here we propose a phenomenological ten di-

mensional model represented by bulk actions of the form

I =

∫

d10x
√−g e−ϕ L , (2.10)

where L is the lagrangian density and gMN is the ten dimensional metric of AdS5 ×W

space, given in eq. (2.7) but now the coordinate z has no hard cut off: 0 ≤ z < ∞ . The
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ten dimensional dilaton field ϕ is also chosen as ϕ = cz2. We will call this model also as

soft wall.

So, instead of eq. (2.8), we take the following prescription for the supergravity regime

in the presence of the dilaton background

ηµ〈PX ,X|J̃µ(q)|P,Q〉 = (2π)4 δ4(PX − P − q) ηµ 〈P + q,X|Jµ(0)|P,Q〉

= iQ
∫

d10x
√−g e−ϕAm

(

Φi∂mΦ∗X − Φ∗X∂mΦi

)

. (2.11)

It is important to remark that the fields Am and Φ appearing in this equation are

not the same as those of the hard wall model used in eq. (2.8). This happens because the

presence of the dilaton background changes the free field equations of motion. In contrast

to the hard wall model, where the solutions are represented in terms of Bessel functions,

in the soft wall we will see that the solutions involve confluent hypergeometric functions

U(a; b; cz2) and M(a; b; cz2). In fact the normalization condition imposed on the scalar

field will reduce the function M to an associated Laguerre polynomial Lm
n (cz2) which

leads to the linear Regge trajectories for the mass spectrum. This is different from the

asymptotic quadratic trajectories obtained in the hard wall model where the masses come

from the zeroes of Bessel functions.

3. Structure functions in the soft wall for large x

In order to calculate the deep inelastic scattering structure functions in the soft wall model

we have to solve first the equations of motion for the gauge field. The gauge field is a

Kaluza Klein excitation with five components Am = (Az, Aµ) that do not depend on the

coordinates of the W space. The gauge field action in the presence of the soft wall dilaton

is

I = −
∫

d10x
√−g e−cz2 1

4
FmnF

mn , (3.1)

which leads to the equations of motion

�Aµ + zecz
2

∂z

(

e−cz2 1

z
∂zA

µ

)

− ηµν∂ν

(

zecz
2

∂z

(

e−cz2 1

z
Az

)

+ ∂ρA
ρ

)

= 0

�Az − ∂z

(

∂µA
µ

)

= 0 . (3.2)

We use the notation: Aµ ≡ ηµνAν and � ≡ ηµν∂µ∂ν .

In order to solve these equations of motion we choose the gauge condition

∂ρA
ρ + zecz

2

∂z

(

e−cz2 1

z
Az

)

= 0 , (3.3)

and impose that the boundary value of the gauge field represents a virtual photon with

polarization ηµ and momentum qµ

Aµ(z, y)|z→0 = ηµ e
iq·y , (3.4)
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where q · y ≡ qµyµ and q2 = qµqµ > 0 . The corresponding solutions are

Aµ(z, y) = ηµ e
iq·y c Γ

(

1 +
q2

4c

)

z2 U
(

1 +
q2

4c
; 2; cz2

)

Az(z, y) =
i

2
η · q eiq·y Γ

(

1 +
q2

4c

)

z U
(

1 +
q2

4c
; 1; cz2

)

, (3.5)

where U(a; b;w) are the confluent hypergeometric functions of the second kind. We note

that both products U(a; 2;w)w Γ(a) and U(a; 1;w)
√
w Γ(a) decrease rapidly for aw > 1.

So it is natural to define an effective maximum value for the radial coordinate

zint ≈
1

√

c (1 + q2

4c )
∼ 1

q
, (3.6)

independent of the infrared cut off scale c. For z > zint the gauge field becomes very small

so that the interaction between the photon and the hadron is negligible. Based on this fact

we will make the approximation that the interaction occurs only at z ≤ zint . Note that

this is not an infrared cut off in the space. There is no boundary condition at z = zint .

The four dimensional center of mass energy squared s = −PX
2 ≈ q2( 1

x − 1 ) is holo-

graphically related to the ten dimensional energy scale s̃ by

s̃ ≤ z2

R2
s . (3.7)

Using the approximation that the interaction occurs at z ≤ zint we have

s̃ ≤ z2
int

R2
q2
(

1

x
− 1

)

<
1

α′ (4πgN)1/2

1

x
. (3.8)

The supergravity approximation used in this section is valid when the ten dimensional

energy is not sufficient to produce massive states. This corresponds to α′ s̃ < 1, so we

must have x≫ (gN)−1/2 . Then, the large x regime considered in this section corresponds

to: 1 > x≫ (gN)−1/2 .

In order to calculate the structure functions for scalar particles we need to solve the

corresponding equations of motion. In this case, the soft wall action (2.10) involves a ten

dimensional Lagrangian density L = ∂MΦ∂MΦ . Since the space is a direct product of

AdS5 and W it is convenient to decompose the ten dimensional scalar field as

Φ(z, y,Ω) = φ(z, y)Y (Ω) , (3.9)

where Ω are the angular coordinates of the space W . Assuming that Y (Ω) is an eigenstate

of the Laplacian in the coordinates Ω, the ten dimensional equation reduces to

z3ecz
2

∂z

(

e−cz2 1

z3
∂zΦ

)

+ �Φ − R2

z2
m5

2 Φ = 0 , (3.10)

where m5 is related to the eigenvalues of Y (Ω). The scaling dimension ∆ of the boundary

operator is related to m5 in the AdS/CFT correspondence by ∆ = 2 +
√

4 + m5
2R2.
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The solution that is normalizable, taking a plane wave for the yµ coordinates, repre-

senting a particle with momentum p, is

Φ = d eip·y z∆ M
(

p2

4c
+

∆

2
;∆ − 1; cz2

)

Y (Ω) , (3.11)

where M(a; b;u) is the confluent hypergeometric function of the first kind and d is a

normalization constant. We impose the normalization condition for the radial and angular

coordinates (z,Ωi ) in the soft wall background

∫

dz d5Ω
R8

z3

√
gW e−cz2 |Φ |2 = R8

∫

dz

z3
e−cz2 |φ(z, y) |2 = 1 , (3.12)

where we have used the angular normalization
∫

d5Ω
√
gW |Y (Ω) |2 = 1 . (3.13)

The normalization condition (3.12) can only be satisfied if the first argument of the

confluent hypergeometric function is a non-positive integer:

p2

4c
+

∆

2
= −n . (3.14)

Identifying p2 = −mn
2 we see how the soft wall leads to a discrete mass spectrum with

linear Regge trajectories for normalizable modes

mn
2 = 4c

(

n+
∆

2

)

, (3.15)

where
√
c represents an infrared cut off mass scale. The confluent hypergeometric function

reduces then to an associated Laguerre polynomial Lm
n (u), so that the normalized solution

reads

Φn(y, z,Ω) =

[

2c∆−1Γ(n+ 1)

Γ(n+ ∆ − 1)

]1/2 1

R4
eip·y z∆L∆−2

n (cz2 )Y (Ω) . (3.16)

For the initial scalar state we choose a field Φi with momentum p = P and n = 0

corresponding the lowest mass in the spectrum

Φi ≡ Φi(y, z,Ω) =

[

2c∆−1

Γ(∆ − 1)

]1/2 1

R4
eiP ·y z∆ Y (Ω) . (3.17)

For the final scalar state we take a field ΦX with momentum p = PX so that

n = nX = −P
2
X

4c
− ∆

2
=

s

4c
− ∆

2
, (3.18)

where we have used momentum conservation PX = P + q . This implies that this state is

given by

ΦX ≡ ΦX(y, z,Ω) =

[

2c∆−1Γ( s
4c − ∆

2 + 1)

Γ( s
4c + ∆

2 − 1)

]1/2 1

R4
eiPX ·y z∆L∆−2

nX
(cz2 )Y (Ω) (3.19)

– 7 –
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Now we perform the soft wall version of the integral (2.8) representing the interaction

amplitude. We use the solutions (3.5) for the gauge field, and (3.17), (3.19) for the scalars.

The result is

iQ
∫

d10x
√−ge−ϕAm

(

Φi∂mΦ∗X − Φ∗X∂mΦi

)

(3.20)

= Q(2π)4δ4(P + q − PX) 2 ηµ

[

Pµ +
qµ

2x

](

Γ( s
4c − ∆

2 + 1)

Γ(∆ − 1)Γ( s
4c + ∆

2 − 1)

)1/2

×

Γ

(

1 +
q2

4c

)
∫

∞

0
dww∆−1 e−w U(1 +

q2

4c
; 2;w) L∆−2

nX
(w)

= (2π)4δ4(P + q − PX) 2Q ηµ

[

Pµ +
qµ

2x

]

q2

4c
(∆ − 1)

[

Γ(∆ − 1)

]1/2

f(q, s)

where w = cz2 and we defined

f(q, s) ≡
[

Γ( s
4c + ∆

2 − 1)

Γ( s
4c − ∆

2 + 1)

]1/2 Γ( q2

4c + s
4c − ∆

2 )

Γ( q2

4c + s
4c + ∆

2 )
. (3.21)

The integral over w in eq. (3.21) was calculated using an integral representation for the U
function. Substituting this result in (2.8) we find the matrix elements of the current

〈P + q,X|Jµ(0)|P,Q〉 = 2Q
[

Pµ +
qµ

2x

]

q2

4c
(∆ − 1)

[

Γ(∆ − 1)

]1/2

f(q, s) . (3.22)

Then, the imaginary part of the forward Compton scattering amplitude in (2.6) reads

ImT µν = 8π2 Q2
∑

X

δ

(

M2
X + (P + q)2

)[

Pµ +
qµ

2x

] [

P ν +
qν

2x

](

q2

4c

)2

×(∆ − 1) Γ(∆)

[

f(q, s)

]2

. (3.23)

From equation (3.15) for the soft wall we see that the spacing between the masses mX

is small compared with q so that the sum over the states X can be approximated by an

integral
∑

X

δ

(

M2
X + (P + q)2

)

=
1

4c

∫

dn δ

(

n− s

4c
+

∆

2

)

=
1

4c
. (3.24)

So, from eqs. (2.4) and (2.5) we find

F1 = 0 ; F2 = 8π3 Q2

x
(∆ − 1) Γ(∆)

(

q2

4c

)3 [

f(q, s)

]2

. (3.25)

These are the structure functions for scalar states in the soft wall model. This is our main

result for the scalar case in the supergravity regime. In order to compare this result with the

one obtained in the hard wall model we are going to consider evaluate this structure function

at leading order in c/q2 . Note that in the deep inelastic scattering limit: q2/4c ≫ 1 with

x fixed. So we have
q2

4c

(

1

x
− 1

)

≫ 1 . (3.26)
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Using this approximation in the relation

s

4c
= −p

2

4c
+

q2

4cx
− q2

4c
=

∆

2
+

q2

4c

(

1

x
− 1

)

, (3.27)

we find that the ratios of the gamma functions in eq. (3.21), at leading order in c/q2 ,

reduce to

Γ( s
4c + ∆

2 − 1)

Γ( s
4c − ∆

2 + 1)
≈
[

q2

4c

(

1

x
− 1

)]∆−2

;

[

Γ( q2

4c + s
4c − ∆

2 )

Γ( q2

4c + s
4c + ∆

2 )

]

≈
[

q2

4cx

]−∆

. (3.28)

So the structure function F2 reads

F2 ≈ 8π3 Q2(∆ − 1) Γ(∆)

(

4c

q2

)∆−1

(1 − x)∆−2 x∆+1 . (3.29)

This leading order result coincides (up to numerical factors) with the scalar structure

functions found in ref. [7] using a hard cut off condition, when we identify the soft and

hard wall mass scales
√
c and Λ.

It is interesting to observe that the matrix element of the hadronic current obtained in

eq. (3.22) holds for any value of q2 and x (as long as (gN)−1/2 ≪ x < 1 ). In particular in

the elastic limit x → 1 this matrix element is related to the elastic form factor of a scalar

particle by

lim
x→1

〈P + q,X|Jµ(0)|P,Q〉 = 2(2P + q)µ F (q2) . (3.30)

So we find the soft wall scalar form factor

F (q2) =
Q
2

Γ(∆)
Γ( q2

4c + 1)

Γ( q2

4c + ∆)
. (3.31)

This result was obtained previously in ref. [27]. In this reference, it was shown that

for the pion (∆ = 2) the soft wall form factor is in better agreement than the hard wall

form factor when compared with results obtained from experimental data.

4. Structure functions at small x

In the previous section we calculated the deep inelastic scattering amplitudes in the case

(gN)−1/2 ≪ x < 1 . In that case we used supergravity approximation for string theory since

the ten dimensional energy scale
√
s̃ was not high enough to excite massive string modes.

Now we will consider a regime of small x corresponding to exp (−√
gN) ≪ x≪ (gN)−1/2 .

In this case there are massive string excitations so that we should, in principle, consider

string scattering amplitudes in AdS5×W space. However, the condition exp (−√
gN) ≪ x

implies that the strings are small compared to the AdS radius and we can approximate

locally the amplitudes by those of flat space.

Now the four dimensional forward scattering amplitude

ηµην T
µν (2π)4 δ4(q − q′) (4.1)
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will be identified with the ten dimensional string amplitude [7]. For the soft wall the string

amplitude is

S10 =

∫

d10x
√−g e−cz2

(

KG

)

|t=0

=
1

8

∫

d10x
√−g e−cz2

{

4vava∂mΦFmnFpn∂
pΦ

−
(

∂MΦ∂MΦvava + 2va∂aΦv
b∂bΦ

)

Fmn F
mn

}

G|
t=0

, (4.2)

where va are the Killing vectors of the compact W space. In this expression K represents

a ten dimensional kinematic factor, where each field represents one of the four interacting

string states associated with the four dimensional particles. The factor G is a flat space

Veneziano amplitude

G =
α′3s̃2

64

∏

ξ̃=s̃,t̃,ũ

Γ(−α′ξ̃/4)
Γ(1 + α′ξ̃/4)

(4.3)

to be evaluated at t ≡ p′ − p = 0 which represents a four dimensional forward scatter-

ing. The ten dimensional Mandelstam variables t̃ , s̃ are related to the four dimensional

variables t, s by

α′s̃ = α′s
z2

R2
+

α′

R2

(

− 3 z∂z + z2∂2
z + ∇2

W

)

(4.4)

α′t̃ = α′t
z2

R2
+

α′

R2

(

− 3 z∂z + z2∂2
z + ∇2

W

)

(4.5)

So that, for the forward scattering condition t = 0 , α′t̃ does not vanish because it contains

contributions from the radial and angular momenta which are of order of (gN)−1/2 . Since

K is real, the imaginary part of S10 is related to the imaginary part of G which at t = 0 is

ImG|
t=0

=
πα′

4

∞
∑

ℓ=1

δ(ℓ− α′s̃

4
) (ℓ)α′ t̃/2 . (4.6)

The factor (ℓ)α′ t̃/2 can be approximated using the delta function and

(α′s̃ ) ≈ α′
z2

R2
s ≪ 1

x
. (4.7)

We have that (α′ s̃ )α
′ t̃/2 ∼ 1 when exp(−√

gN ) ≪ x. Thus

ImG|
t=0

≈ πα′

4

∞
∑

ℓ=1

δ

(

ℓ− α′ s z2

4R2

)

. (4.8)

In the kinematic factor K, the field strength Fmn is associated with an incoming photon

of four momentum qµ and an outgoing photon of momentum q′µ while Φ represents the

incoming and outgoing scalar states with four momentum Pµ. These fields are represented

by the supergravity solutions given in the previous sections involving four dimensional
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plane waves. The derivatives ∂µ acting on these solutions generate the corresponding four

dimensional momenta. The condition x ≪ 1 implies that P · q ≫ q2 ≫ P 2, so that the

dominant term in K will be the one corresponding to (P · q )2. This contribution comes

from the first term in eq. (4.2), with m = µ and p = ν. Then we have

ImS10 =
πα′

8

∞
∑

ℓ=1

∫

d10x
√−g e−cz2

vava

× ∂µΦ(−P ) ∂νΦ(P )Fµn(−q′)Fνn(q) δ

(

ℓ − α′sz2

4R2

)

. (4.9)

The field strengths, calculated from the solutions in eq. (3.5) for the gauge field are

F0µ(q) =
z

2
eiq·y

[

qµ(q · η) − ηµq
2

]

Γ

(

1 +
q2

4c

)

U
(

1 +
q2

4c
; 1; cz2

)

Fµν(q) = i cz2 eiq·y
[

qµην − qνηµ

]

Γ

(

1 +
q2

4c

)

U
(

1 +
q2

4c
; 2; cz2

)

. (4.10)

For the scalar states, using the solution for the initial state in eq. (3.17) we find

∂µΦ(−P )∂νΦ(P ) = PµP
ν 2c∆−1

Γ(∆ − 1)

z2∆+2

R10
|Y (Ω) |2 . (4.11)

The angular normalization integral is

∫

d5Ω
√
gW vava |Y (Ω) |2 = ρR2 , (4.12)

where ρ is some dimensionless quantity.

Using the results (4.10) and (4.11) in the interaction action (4.9) and integrating over

y and Ω we find

ImS10 = (2π)4δ4(q − q′)
πα′ ρ

8R2

2c∆−1

Γ(∆ − 1)
PµP

ν
∞
∑

ℓ=1

∫

dz e−cz2

z2∆+3 Γ2

(

1 +
q2

4c

)

×
{

1

4
[ qµ(q · η) − ηµq2 ] [ qν(q · η) − ηνq

2 ] U2

(

1 +
q2

4c
; 1; cz2

)

+c2 z2 [ qµηγ − qγηµ][ qνηγ − qγην ] U2(1 +
q2

4c
; 2; cz2)

}

δ

(

ℓ − α′sz2

4R2

)

.

(4.13)

We can write the delta function as

δ

(

ℓ − α′sz2

4R2

)

=
2R2

α′szℓ
δ(z − zℓ) , (4.14)

where

zℓ = 2R

√

ℓ

α′ s
≈ 2

q
(4π gN)1/4 (ℓ x)1/2 . (4.15)
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After integrating over z and identifying the 10-d string amplitude with the 4-d ampli-

tude we find that

ImT µν =
π ρ c∆−1

8Γ(∆ − 1)

(q2)2

s x2

{[

ηµν−q
µqν

q2

]

A2 +

[

Pµ +
qµ

2x

] [

P ν +
qν

2x

]

4x2

(

A1 +
A2

q2

)}

,

(4.16)

where we have defined

A1 ≡ 1

4
Γ2(a)

∞
∑

ℓ=1

e−cz2

ℓ z2∆+2
ℓ U2(a; 1; cz2

ℓ )

A2 ≡ c2 Γ2(a)

∞
∑

ℓ=1

e−cz2

ℓ z2∆+4
ℓ U2(a; 2; cz2

ℓ ) , (4.17)

with a = 1 + q2

4c . So we obtain from eq (4.16)

F1 =
π2 ρ c∆−1

4Γ(∆ − 1)

(q2)2

s x2
A2

F2 =
π2 ρ c∆−1

4Γ(∆ − 1)

(q2)2

s x2
(2x q2)

(

A1 +
A2

q2

)

. (4.18)

These are the soft wall structure functions for the small x regime. This is the main result

of this section. In order to evaluate these structure functions at leading order in c/q2 we

define ζℓ ≡ (a− 1)cz2
ℓ so that

ζℓ = (a− 1)cz2
ℓ =

q2

4
z2
ℓ < q2 z2

int ≈ 1 . (4.19)

Then we can consider ζℓ to be bounded in the deep inelastic limit and we can use

lim
a→∞

U(a; b;
ζ

a− 1
) =

2

Γ(1 + a− b)
ζ(1−b)/2Kb−1(2

√

ζ) , (4.20)

and

lim
a→∞

e−cz2

ℓ = lim
a→∞

e−
ζℓ

a−1 = 1 . (4.21)

So the series reduce to

A1 ≈
[

q2

4

]−∆−1 ∞
∑

ℓ=0

ζ∆+1
ℓ K2

0 (2
√

ζℓ)

A2 ≈ 4

[

q2

4

]−∆ ∞
∑

ℓ=0

ζ∆+1
ℓ K2

1 (2
√

ζℓ) , (4.22)

where we have included null ℓ = 0 terms. These series can be approximated by integrals

since ζℓ+1 − ζℓ =
√

4πgN x ≪ 1. Defining ω ≡ 2
√
ζ, we obtain

A1 ≈
(

q2
)−∆−1

2x (4π gN)1/2
I 0, 2∆+3

A2 ≈
(

q2
)−∆

2x (4π gN)1/2
I 1, 2∆+3 , (4.23)
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where

I j, n ≡
∫

∞

0
dω ωnK2

j (ω) = 2n−2 Γ(n+1
2 + j) Γ(n+1

2 − j) Γ2(n+1
2 )

Γ(n+ 1)
. (4.24)

From (4.18) and (4.23) we have that

F1 ≈ π2 ρ

8 (4π gN)1/2 Γ(∆ − 1)

1

x2

(

c

q2

)∆−1

I 1, 2∆+3

F2 ≈ 2xF1
I 0, 2∆+3 + I 1, 2∆+3

I 1,2∆+3
= 2x

2∆ + 3

∆ + 2
F1 , (4.25)

where we have used the relation I 0, n = n−1
n+1 I 1, n . As in the large x case of section 3, the

soft wall deep inelastic structure functions for small x are in agreement at leading order

with the hard wall structure functions [7].

5. Conclusions

In this article we have calculated the deep inelastic structure functions at large gN using a

phenomenological ten dimensional soft wall model. We investigated two different regimes

of the Bjorken parameter x: (gN)−1/2 ≪ x < 1 and exp (−√
gN) ≪ x ≪ (gN)−1/2 .

In the first regime we performed a supergravity calculation and in the second regime we

considered the contribution of massive string states. We found that at leading order the

structure functions for soft and hard wall models are the same. This result could be

expected since high energy processes are mapped in the small z UV region of AdS space

while the hard and soft wall models differ mostly in the large z IR region. However the

calculation of the structure functions involve the mass spectrum and the free field solutions

which are different in these models. So, there has to be some non trivial compensation

that leads to the same result.

In the soft wall model the Regge trajectories for mesons are linear while for the hard

wall they are quadratic. As a consequence, the contributions from the sum over interme-

diate states to the structure functions in eq. (2.6) are not the same. The mass spectrum

of the final hadronic states implies that in the soft wall model

∑

X

δ

(

M2
X + (P + q)2

)

=
1

4c
. (5.1)

This relation differs from that found in the hard wall model [7]:

∑

X

δ

(

M2
X + (P + q)2

)

=
1

2πs1/2 Λ
. (5.2)

The fact that the field solutions are different implies also a difference in the hadronic

currents. It is straightforward to show from eq. (3.22) and ref. [7] that in the DIS limit

(q2 → ∞ with x fixed), the matrix elements of the hadronic currents in the soft wall (SW)

and hard wall (HW) models are related by

〈P + q,X|Jµ(0)|P,Q〉HW ∼ Λ−1/2 s1/4 〈P + q,X|Jµ(0)|P,Q〉SW , (5.3)
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once we identify the constants
√
c and Λ that represent the QCD scale.

As we can see from eq. (2.6), there is a non trivial compensation between the factors

coming from the masses (5.1) (5.2) and the matrix elements (5.3) in such a way that the

leading order structure functions for soft and hard wall models are the same.

In the elastic limit, as we discussed in section 3 the form factor obtained from the

hadronic current in the soft wall model differs from the hard wall result. In refs. [26, 27]

it was shown that the soft wall form factors are in better agreement with results obtained

from experimental data.

We discuss in the appendix the problem of fermions in a dilaton background. There we

consider a hybrid model with hard and soft cut offs and find the same structure functions

as in the hard wall model. It would be interesting to calculate the structure functions in

other holographic models for QCD such as [29 – 31].
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A. A hybrid model for fermions

The model that we considered in this article can not be used to fermions. This happens

because the dilaton background does not change the form of the fermionic free equation of

motion and does not lead to normalizable fermionic solutions. Nevertheless, the presence

of the dilaton background changes the solution for the virtual photon. So it is interesting

to see the effect of this background on the structure functions in the fermionic case. For

this purpose we consider here a different ten dimensional model: an AdS5 slice (hard cut

off) times a five dimensional compact space with a dilaton background (soft cut off). Note

that the virtual photon field is a non-normalizable solution so that it is not affected by the

hard cut off. Then we can use the virtual photon solution obtained in section 3.

For a fermionic field in the dilaton background the AdS5 sector of the action is pro-

portional to
∫

d5x
√
g5 e

−ϕ ψ̄

(

D

2
−
←

D

2
− m5

)

ψ (A.1)

where g5 is the determinant of the AdS5 metric and ϕ = cz2 . The operators D and
←

D are

defined by

D ≡ z

R
γ̂m ∂m − 2

R
γ̂z

←

D ≡
←

∂m
z

R
γ̂m − 2

R
γ̂z (A.2)

where γ̂m with m = z, µ are defined on the five dimensional tangent space with metric

diag(1,−1, 1, 1, 1) , while γm are defined in the curved AdS space. These matrices are

related by γ̂m = R
z γ

m.
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The equation of motion is
(

D −m5 −
z

2R
∂zϕ γ̂

z

)

ψ = 0 . (A.3)

The five dimensional solution with a four dimensional plane wave factor with momentum

p and spin σ is

ψ = C eip·y eϕ/2 z5/2

[

Jm5R−1/2(
√

−p2z)P+ + Jm5R+1/2(
√

−p2z)P−

]

uσ (A.4)

where the Dirac spinor uσ satisfies /p uσ =
√

−p2 uσ , P± ≡ 1
2(1 ± γ̂z) and C is a

normalization constant. The form of the fermionic solution is analogous to the hard wall

solution. The dilaton shows up just as a multiplicative factor which cancels in the action

and in the normalization condition. That means: the dilaton background alone does not

work as an infrared cut off for the fermionic field. The normalization condition for the

fermions is guaranteed by the hard cut off z = zmax = 1/Λ in the space.

Considering ten dimensional fermionic fields of the form λ = ψ(z, y) ⊗ η(Ω) with

angular normalization:
∫

d5Ω
√
gW η̄(Ω)η(Ω) = 1 , (A.5)

we find the normalization condition for ψ

R10

∫ 1/Λ

0

dz

z5
e−ϕ ψ̄ γ1ψ = 1 . (A.6)

This implies that the normalization constant for the fermionic solution (A.4) reads

C = C̃
Λ1/2

R9/2
(−p2)1/4 , (A.7)

where C̃ is a dimensionless constant. The mass spectrum of the fermion field is discrete

due to the boundary conditions at the hard cut off. They are not affected by the pres-

ence of the dilaton. This spectrum is determined from the zeros of the Bessel functions.

Asymptotically, this implies
√

−p2 = mn = nπΛ . (A.8)

For the initial fermionic state with momentum p = P and spin σ and mass mi ≈ πΛ

we can approximate in the interaction region z ≤ zint ∼ 1/q

ψi =
C̃i

Λ3/2R9/2
eiP ·y eϕ/2 (Λz)τ+1/2 P+ uiσ , (A.9)

where τ = ∆ − 1/2 and

∆ = m5R+ 2 (A.10)

is the conformal dimension of the boundary operator.

The final fermionic state with momentum p = PX and spin σ′ can be written as

ψX = C̃X

(

Λ

R9

)1/2

s1/4 eiPX ·y eϕ/2 z5/2

[

Jτ−2(s
1/2z)P+ + Jτ−1(s

1/2z)P−

]

uXσ′ . (A.11)
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The fermion-photon interaction in the supergravity approximation is given by

Sint = iQ
∫

d10x
√−ge−ϕAmλ̄X γm λi . (A.12)

For simplicity we choose a polarization η where Az = 0. Then, the interaction term reduces

to

Sint = iQ
∫

d4y dz d5Ω
√−ge−ϕAµλ̄X γµ λi

= iQ (2π)4δ4(P + q − PX)C̃iC̃XΛτ−1/2s1/4 c ηµ ūXσ′ γ̂
µP+uiσ I , (A.13)

where

I = Γ

(

1 +
q2

4c

)
∫ 1/Λ

0
dz zτ+1 U

(

1 +
q2

4c
; 2; cz2

)

Jτ−2(s
1/2z) . (A.14)

The integral in I can be rewritten defining ζ = (qz)2/4 and a = 1 + q2/4c

I =
1

2

(

2

q

)τ+2 ∫ c(a−1)/Λ2

0
dζ ζτ/2 Γ (a) U

(

a; 2;
ζ

a− 1

)

Jτ−2

(

2ζ1/2

√

1

x
− 1

)

.(A.15)

The fermionic structure functions can be obtained from this integral. We will just

consider the leading order contribution in the DIS limit. The integrand of the above

expression is negligible for any ζ ≥ ζ0 such that 1 ≪ ζ0 ≪ c(a− 1)/Λ2 = q2/4Λ2. Then,

in the DIS limit (q2 → ∞ with x fixed) a → ∞ and ζ is bounded so we can approximate

the confluent hypergeometric function as

Γ (a) U
(

a; 2;
ζ

a− 1

)

≈ 2 (a− 1) ζ−1/2K1

(

2 ζ1/2
)

, (A.16)

and we find that

I ≈ Γ(τ)

2c

(

2x

q

)τ (1

x
− 1

)
τ
2
−1

. (A.17)

In a similar way to the scalar case, we can then extract the matrix elements of the

current from the interaction term as

ηµ〈PX ,X, σ
′|Jµ(0)|P,Q, σ〉 = iQ C̃iC̃XΛτ−1/2s1/4 c ηµ ūXσ′ γ̂

µP+uiσ

×Γ(τ)

2c

(

2x

q

)τ (1

x
− 1

)
τ
2
−1

(A.18)

In order to obtain the imaginary part of the forward Compton amplitude we have to

sum over radial excitations and final spins and average over initial spins. We find

ηµ ην ImT µν = Q2C ′Λ2τ−2xτ+2(1 − x)τ−2q−2τ

[

(P · η)2 − 1

2
P · q η2

]

, (A.19)
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where C ′ = 22τ−1 [C̃i C̃X Γ(τ)]2 . Then, we obtain the leading order structure functions in

the fermionic case

F2 = 2F1 = πQ2 C ′
(

Λ2

q2

)τ−1

xτ+1 (1 − x)τ−2 , (A.20)

in agreement with the hard cut off calculation presented in ref. [7]. Note that in spite of

the photon dependence on the dilaton scale
√
c, the above result depends only on the hard

cut off scale Λ of this hybrid model.
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